BUB1 mediation of caspase-independent mitotic death determines cell fate
نویسندگان
چکیده
The spindle checkpoint that monitors kinetochore-microtubule attachment has been implicated in tumorigenesis; however, the relation between the spindle checkpoint and cell death remains obscure. In BUB1-deficient (but not MAD2-deficient) cells, conditions that activate the spindle checkpoint (i.e., cold shock or treatment with nocodazole, paclitaxel, or 17-AAG) induced DNA fragmentation during early mitosis. This mitotic cell death was independent of caspase activation; therefore, we named it caspase-independent mitotic death (CIMD). CIMD depends on p73, a homologue of p53, but not on p53. CIMD also depends on apoptosis-inducing factor and endonuclease G, which are effectors of caspase-independent cell death. Treatment with nocodazole, paclitaxel, or 17-AAG induced CIMD in cell lines derived from colon tumors with chromosome instability, but not in cells from colon tumors with microsatellite instability. This result was due to low BUB1 expression in the former cell lines. When BUB1 is completely depleted, aneuploidy rather than CIMD occurs. These results suggest that cells prone to substantial chromosome missegregation might be eliminated via CIMD.
منابع مشابه
Cancer Cells Death Induced by Microtubule-Targeting Agents in Human TRAIL Inactivates the Mitotic Checkpoint and Potentiates
Tumor necrosis factor–related apoptosis–inducing ligand (TRAIL) has attracted interest as an anticancer treatment, when used in conjunction with standard chemotherapy. We investigated the mechanistic basis for combining low-dose TRAIL with microtubule-targeting agents that invoke the mitotic checkpoint. Treatment of T98G and HCT116 cells with nocodazole alone resulted in a robust mitotic block ...
متن کاملCaspase-free mitotic death
Caspase-free mitot ic death O n page 283, Niikura et al. document a new way for abnormal cells to kill themselves. The mechanism might weed out potentially cancerous cells in which the spindle checkpoint has malfunctioned. Before progressing through mitosis, cells verify that the microtubules of the spindle apparatus are properly attached to the chromosomes. If they aren’t, the spindle checkpoi...
متن کاملTRAIL inactivates the mitotic checkpoint and potentiates death induced by microtubule-targeting agents in human cancer cells.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted interest as an anticancer treatment, when used in conjunction with standard chemotherapy. We investigated the mechanistic basis for combining low-dose TRAIL with microtubule-targeting agents that invoke the mitotic checkpoint. Treatment of T98G and HCT116 cells with nocodazole alone resulted in a robust mitotic block ...
متن کاملBir1 Deletion Causes Malfunction of the Spindle Assembly Checkpoint and Apoptosis in Yeast
Cell division in yeast is a highly regulated and well studied event. Various checkpoints are placed throughout the cell cycle to ensure faithful segregation of sister chromatids. Unexpected events, such as DNA damage or oxidative stress, cause the activation of checkpoint(s) and cell cycle arrest. Malfunction of the checkpoints may induce cell death. We previously showed that under oxidative st...
متن کاملStochastic Competition between Mechanistically Independent Slippage and Death Pathways Determines Cell Fate during Mitotic Arrest
Variability in cell-to-cell behavior within clonal populations can be attributed to the inherent stochasticity of biochemical reactions. Most single-cell studies have examined variation in behavior due to randomness in gene transcription. Here we investigate the mechanism of cell fate choice and the origin of cell-to-cell variation during mitotic arrest, when transcription is silenced. Prolonge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 178 شماره
صفحات -
تاریخ انتشار 2007